Harvesting Solar Could Help Small-Scale Farmers Improve Sustainability
A recent paper published in the journal PLOS One offered some tantalizing details. In May 2015, researchers at Oregon State University, in Corvallis, installed microclimate research stations beside solar panels with and without vegetation underneath. The instrumentation gathered data on the ambient temperature, humidity and soil moisture. Over the course of the summer, data revealed the soil under the solar panels with vegetation had higher moisture content. Moreover, the plant volume had doubled in size and yielded greater nutritional value in comparison to un-shaded plants in the surrounding area.
“Under this configuration if you can produce more crops with less water, who doesn’t want to see that,” said Macknick.
However not every farm is suitable for agrivoltaics. Installing solar panels may be cost prohibitive, for example, in remote areas with ample farmland and an abundant water supply.
In California, exploring agrivoltaics will require striking a balance between the competing interests of farmland conservation and energy production. Legislation SB100, places California on the road to a 100 percent low-carbon, renewable energy future by 2045. How the state plans to meet this targeted goal remains an open question.
One potential roadblock for agrivoltaics is the Williamson Act of 1965, a statute designed to prevent the leapfrog development of farmland. The law enables local governments to enter into contracts with farmers to keep the land in agricultural production or open space.
Perhaps because of it, California’s farm counties ar slow to change. The Division of Land Resource reports 15,776 acres of farmland converted from agricultural production to solar power between 2014-2016. During that time frame the total number of acres in agricultural production dipped slightly from 31,386,872 to 31,351,190 acres.
Meanwhile, Komineck is blazing a path for his family farm with the help of solar technology.
According to Macknick, the combination of the panels and vegetation can improve productivity because the shadows cast by solar panels and the groundcover work together to create a favorable microclimate. “Under the solar panels you have better moisture retention. What we’re finding is slightly cooler temperatures during the day and slightly warmer temperatures at night.”